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About Aquanty Inc.
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Leveraging state-of-the-
art technology for real-

time hydrologic 
forecasting



Aquanty Products and Services

• Fully integrated, 
hydrological model

• Entirely physics-
based

• Used worldwide and 
across Canada
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HydroGeoSphere Canada1WaterHydroClimateSight

•Web-based SaaS 
platform since 2018

•Operational 
forecasting services

• Including 
HydroSphereAI

•Comprehensive 
modelling framework 
at continental scale

•Federally funded

•High resolution 
datasets available 
today 



HydroSphereAI: Product Overview

Continental coverage

• ~2k stations active

• Easily scalable to US 
and other regions
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Cutting edge algorithms
• LSTMs
• Fine tuning
• Custom end-points

Forecast integration
• GEPS, HRDPS, 

SnoDAS, CaPA…
• Daily, seasonal, 

hourly

Operational platform
• Web app
• APIs
• Robust &

Automated

Machine Learning-based hydrologic forecasts across Canada and the US



Some History, sort of...

• Training ANNs or Random Forests as 
Rainfall-Runoff models is actually an 
old idea and has been tried before

• However, trained on a single 
watershed, ML models do not 
perform better than existing Rainfall-
runoff models

• They either over-fit the training data 
or have poor skill
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LSTMs and Large Datasets
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• Based Kratzert et al. (2018) and follow-on work
(> 1000 citations)

Two key advances:

• Use of LSTMs, utilizing memory cell

• Trained on a very large set of watersheds, using 
geographic attributes as predictors

• Academic focus on 
historical evaluation and 
interpretability

LSTM Schematic

Excerpt of watershed features from the CAMELS dataset (US)



Why LSTMs?

• LSTMs have an internal memory 
cell, which can represent state 
variables

• They learn to track the physical 
state of the watershed, quite 
similar to physical models

oe.g. snowpack or 
groundwater table

oThis means we also need a 
long spin-up, like physical 
models (~1 year)

General architecture of an Long- Short-Term Memory 
(LSTM) network; "C" is the memory cell state.
(Guillaume Chevalier - CC BY-SA 4.0)
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N.B.: Originally LSTMs come out 
of natural language processing, 
but are frequently used for 
timeseries prediction



The Training Data

• CAMELS and HYSETS provide 
geographic attributes and 
meteorology for many 
catchments in North America

o In Canada mainly based on 
HYSETS and ERA5

• We added our own custom data, 
based on:
o CaPA & HRDPS
o AgERA5
o HyDat
o Canada1Water

geographic data

• Note that all inputs for the ML 
models are catchment-averaged: 
essentially an HRU approach

https://ncar.github.io/hydrology/datasets/CAMELS_attributes
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Model Inputs & Outputs
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LSTM

Watershed 
features

Numerical Weather Prediction (or AI-based)

Daily forecasts at Water Survey of Canada stations

Inputs: geographic data and 
daily weather data, averaged 
over catchment/HRU

Outputs: daily streamflow



ML Model Skill (historical evaluation)

ML models are trained using our
custom dataset:

• Weather data mainly based on AgERA5

• Fine-tuning with CaPA further 
improves skill (not shown here)

• Static geographic attributes are derived 
from Canada1Water

• HYDAT gauge data from WSC
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Historical simulation skill of a 10-
member ensemble of LSTMs evaluated 
across Canada over a train/test split in 
time (LSTM) and over catchments 
(LSTM ungauged).

• Models achieve excellent skill in 
gauged basins (if catchment was in 
training dataset – blue line)

• Skill deteriorates in ungauged basins 
(i.e. unknown), but is still quite good! 
(green dashed line)



Gauge Data Integration (Assimilation)

ML models are trained using our
custom dataset:

• Weather data mainly based on AgERA5

• Fine-tuning with CaPA further 
improves skill (not shown here)

• Static geographic attributes are derived 
from Canada1Water

• HYDAT gauge data from WSC
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As before, plus skill of a QLSTM with 
streamflow data integration 50% of the 
time (50% hold-out), evaluated with 
train/test split in time only.

QLSTM: Data Integration

• QLSTMs use past streamflow 
observations as additional predictor

• Significantly increases skill, if 
streamflow observations are 
available



Skill Distribution across Canada (QLSTM)

QLSTM Skill 
Distribution

•Very strong skill 
in snow-
dominated 
catchments

•Prairies have 
weakest skill 
(like most models)

•Southern Ontario 
may have too 
much human 
interference

12



Gauge Data Integration (Assimilation)

ML models are trained using our
custom dataset:

• Weather data mainly based on AgERA5

• Fine-tuning with CaPA significantly 
improves skill

• Static geographic attributes are derived 
from Canada1Water

• HYDAT gauge data from WSC

13

As before, with skill of a standard 
QLSTM with streamflow data 
integration (50% hold-out), and a 
QLSTM fine-tuned using CaPA.

QLSTM: Data Integration

• QLSTMs use past streamflow 
observations as additional predictor

• Significantly increases skill, if 
streamflow observations are 
available



HydroSphereAI Features

• Fine-tuning with augmented,
custom datasets

• Custom forecast 
end-points and 
synthetic gauges
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• Integration of real-time observed 
streamflow data integration
(data assimilation)

• Real-time rain gauges

• Flood forecasting with hourly
time stepping

• High/low flow alerts

• (Sub-)seasonal
drought forecasting

• Snowpack forecasts

• Soil moisture forecasts

• (and streamflow)



Example: a Seasonal Simulation with Snow
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1-year historical simulation, 
with observations and 
historical normals:

• Alpine headwaters 
between Banff & Jasper

• Snow accumulation over 
winter, followed by 
runoff peak in spring 
(freshet)

• ML models capture 
seasonal behavior well

• Forced by historical 
climate (AgERA5)

One year of historical simulation (hindcast) with 
observed streamflow and snow from ERA5-Land; 
observed historical range in light blue (±σ).



Example: a Seasonal Simulation with Snow
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1-year historical simulation, 
with observations and 
historical normals:

• A watershed in 
eastern Quebec

• Snow accumulation over 
winter, followed by 
runoff peak in spring 
(freshet)

• ML models capture 
seasonal behavior well

• Forced by historical 
climate (AgERA5)

One year of historical simulation (hindcast) with 
observed streamflow and snow from ERA5-Land; 
observed historical range in light blue (±σ).



Short-range Hourly Forecasts
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• Captures short-term variability by simulating 
multiple time-scales (MTS models)

• Hourly models achieve performance 
comparable to daily (median NSE: 0.71).

• Useful for extreme events and flood 
forecasting

Top: Structure of the Multi-Time-
Scale models: an hourly model is 
initialized from and constrained to 
a daily parent model
(Gauch et al. 2021).

Left: Hourly (MTS) models for 
a catchment in Northern 
Ontario for WY2023/24 (left) 
and Apr & May 2024 (right).
Note different gauges!

• Can be integrated with real-time rain gauges 
and streamflow data



Canada-wide Deployment
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Deployment across Canada will 
be very straightforward:

• ML Models scale very well – 
computational resources are 
already available

• Static/geographic attributes 
available from Canada1Water

• Weather data from 
ECCC/MSC: CaPA, HRDPS, 
GEPS

• Larger rivers will need routing

Aquanty is already running forecasts for all HYSETS watersheds 
and has static attributes and forcing for all HyDat catchments.
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Routing for a large headwater 
subbasin of the Peace River.

Smoky River at Watino (07GJ001), 
~50,000 km2

• The basin is discretized into a complete and 
non-overlapping set of subbasins

• Each subbasin (< 2000 km2) is simulated 
using an LSTM

• LSTM forecasts are connected using a 
routing model 

Simulation 
skill of the 
routing 
model; only 
showing 
test period 
(excluding 
calibration 
period)

Routing for Large Basins



From Model to Forecast
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Numerical 
models

High 
performance 
computers

Custom software

Meteorological 
forecasts Monitoring data

Databases

User Interfaces

Actionable insights

Raw forecast data

Job schedulers

Alerting 
mechanisms

ML models

Containerization

Expert staff



Beta-Test with Conservation Ontario

Operational deployment with all 
Conservation Authorities in ON
• At all WSC stations  < 2000 km2 

in 36 Ontario watersheds

Active Participation by CAs
• 19 CAs are participating and 

actively using the forecasts

Daily ML-based Forecasts
• Fully automated processing
• 16 day forecasts based on GEPS
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• The Front-end for Aquanty's operational 
real-time forecasting platform

• Hosts ML forecasts as well as 
HydroGeoSphere forecasts (not shown), 
alongside WSC observations

• Also includes useful data products, e.g. 
SnoDAS, CaPA, MODIS and 
physiographic datasets

• Serves forecasts in a user-friendly 
graphical interface since 2018

HydroClimateSight
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Data Integration 
(assimilation) can 
improve spin-up 
significantly!

o 1-year spin-up forced 
by CaPA and HRDPS 
analysis from ECCC

o Forecasts from GEPS 
(ensemble), HRDPS, 
HRRR, NAM and CFSv2 
(ensemble) supported

Forecast Initialization



From Training to Forecast

Historical Weather 
& Climate Data

• Model training 
and evaluation

• Historical 
reanalysis

• e.g. CanGrid, 
ERA5(L)

Near-real-time 
Weather Data

• Model spin-up

• Data 
Assimilation

• Digital Twin

• e.g. CaPA, 
HRDPS Analysis

Numerical 
Weather Forecast

• Driving 
hydrological 
forecasts

• … including 
ensembles

• e.g. HRDPS, 
GEPS, CFS

Seamless weather and climate data integration from 
calibration, over near-real-time spin-up to actual (ensemble) 
forecast
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Data Ingestion and Processing

Robust data downloads
• CaPA
• HRDPS
• CalDAS
• SnoDAS
• ERA5
• WSC
• Kisters
• Custom data sources

Data transformation
• QA/QC
• Extract variables
• Infilling
• Reprojection
• NetCDF/Zarr conversion
• Cleanup

Storage
• Local SSD for immediate usage
• Local NAS (HDD) for longer 

term storage + backups
• Time series database
• Cloud blob storage
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Weather Data Processing

Download

• Download grib files from ECCC

• Convert/compute variables

Reprojection

• Clip, reproject & regrid to multiple
areas of interest

Bias-
correction

• Simple statistical bias-correction

• Lapse-rate adjustment using DEM

Export

• Generate, e.g. geotiff or zarr

• Aggregate over polygons

• Resample in time (e.g. daily)
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Interoperability and Scalability

Direct Wiski imports (ZRXP)

HEC-RAS format (DSS) Delft FEWS imports

GIS imports Direct data transfer

Responsive web design
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Questions & Roundtable Discussion 

30


