

HydroSphereAl

March 4th, 2025

Andre R. Erler (<u>aerler@aquanty.com</u>) Steven K. Frey (<u>sfrey@aquanty.com</u>) Brayden McNeill (<u>bmcneill@aquanty.com</u>)

About Aquanty Inc.

HydroGeoSphere[™]

2

Aquanty Products and Services

HydroGeoSphere

HydroClimateSight

- Fully integrated, hydrological model
- Entirely physicsbased
- Used worldwide and across Canada

- Web-based SaaS platform since 2018
- Operational forecasting services
- Including
 HydroSphereAl

Canada]Water

- Comprehensive modelling framework at continental scale
- Federally funded
- High resolution datasets available today

HydroSphereAI: Product Overview

Machine Learning-based hydrologic forecasts across Canada and the US

Continental coverage

- ~2k stations active
- Easily scalable to US and other regions

Cutting edge algorithms

- LSTMs
- Fine tuning
- Custom end-points

Forecast integration

- GEPS, HRDPS, SnoDAS, CaPA...
- Daily, seasonal, hourly

Operational platform

- Webapp
- APIs
- Robust & Automated

Some History, sort of...

- Training ANNs or Random Forests as Rainfall-Runoff models is actually an old idea and has been tried before
- However, trained on a single watershed, ML models do not perform better than existing Rainfallrunoff models

• They either over-fit the training data or have poor skill

LSTMs and Large Datasets

 Based Kratzert et al. (2018) and follow-on work (> 1000 citations)

Two key advances:

- Use of LSTMs, utilizing memory cell
- Trained on a very large set of watersheds, using geographic attributes as predictors

Excerpt of watershed features from the CAMELS dataset (US)

Why LSTMs?

- LSTMs have an internal memory cell, which can represent state variables
- They learn to track the physical state of the watershed, quite similar to physical models
 - oe.g. snowpack or groundwater table
 - This means we also need a long spin-up, like physical models (~1 year)

General architecture of an Long- Short-Term Memory (LSTM) network; "C" is the memory cell state. (Guillaume Chevalier - CC BY-SA 4.0)

N.B.: Originally LSTMs come out of natural language processing, but are frequently used for timeseries prediction

The Training Data

- CAMELS and HYSETS provide geographic attributes and meteorology for many catchments in North America
 - In Canada mainly based on 0 **HYSETS and ERA5**
- We added our own custom data, based on:
 - CaPA & HRDPS
 - AgERA5 Ο
 - HyDat Ο
 - **CanadalWater** \bigcirc geographic data

• Note that all inputs for the ML models are catchment-averaged: essentially an HRU approach

Model Inputs & Outputs

Numerical Weather Prediction (or AI-based)

ML Model Skill (historical evaluation)

ML models are trained using our <u>custom dataset</u>:

- Weather data mainly based on AgERA5
- Fine-tuning with CaPA further improves skill (not shown here)
- Static geographic attributes are derived from <u>CanadalWater</u>
- HYDAT gauge data from WSC
 - Models achieve excellent skill in gauged basins (if catchment was in training dataset – blue line)
 - Skill deteriorates in ungauged basins (i.e. unknown), but is still quite good! (green dashed line)

Historical simulation skill of a 10member ensemble of LSTMs evaluated across Canada over a train/test split in time (LSTM) and over catchments (LSTM ungauged).

Gauge Data Integration (Assimilation)

ML models are trained using our custom dataset:

- Weather data mainly based on AgERA5
- Fine-tuning with CaPA further improves skill (not shown here)
- Static geographic attributes are derived from <u>CanadalWater</u>
- HYDAT gauge data from WSC

QLSTM: Data Integration

- QLSTMs use past streamflow observations as additional predictor
- Significantly increases skill, if streamflow observations are available

As before, plus skill of a QLSTM with streamflow data integration 50% of the time (50% hold-out), evaluated with train/test split in time only.

Skill Distribution across Canada (QLSTM)

0.2 0.6 0.8 0.4 0.0

QLSTM Skill Distribution

•Very strong skill in snowdominated catchments

•Prairies have weakest skill (like most models)

 Southern Ontario may have too much human interference

Gauge Data Integration (Assimilation)

ML models are trained using our custom dataset:

- Weather data mainly based on AgERA5
- Fine-tuning with CaPA significantly improves skill
- Static geographic attributes are derived from <u>CanadalWater</u>
- HYDAT gauge data from WSC

QLSTM: Data Integration

- QLSTMs use past streamflow observations as additional predictor
- Significantly increases skill, if streamflow observations are available

As before, with skill of a standard QLSTM with streamflow data integration (50% hold-out), and a QLSTM fine-tuned using CaPA.

HydroSphereAl Features

- Fine-tuning with augmented, custom datasets
- Custom forecast end-points and synthetic gauges

- (data assimilation)

- Flood forecasting with hourly time stepping
- High/low flow alerts
- (Sub-)seasonal drought forecasting

- Snowpack forecasts
- (and streamflow)

 Integration of real-time observed streamflow data integration

• Real-time rain gauges

Soil moisture forecasts

Example: a Seasonal Simulation with Snow

1-year historical simulation, with observations and historical normals:

- Alpine headwaters **between Banff & Jasper**
- Snow accumulation over winter, followed by runoff peak in spring (freshet)
- ML models capture seasonal behavior well
- Forced by historical climate (AgERA5)

One year of historical simulation (hindcast) with observed streamflow and snow from ERA5-Land; observed historical range in light blue $(\pm \sigma)$.

Example: a Seasonal Simulation with Snow

1-year historical simulation, with observations and historical normals:

- A watershed in eastern Quebec
- Snow accumulation over winter, followed by runoff peak in spring (freshet)
- ML models capture seasonal behavior well
- Forced by historical climate (AgERA5)

Short-range Hourly Forecasts

- Captures short-term variability by simulating multiple time-scales (MTS models)
- Hourly models achieve performance comparable to daily (median NSE: 0.71).
- Useful for extreme events and flood forecasting
- Can be integrated with real-time rain gauges and streamflow data

Daily input variables at day dDaily prediction at day d

LSTM

 \hat{v}_{d}^{D}

 x_1^L

 $x_{d,h}^{H}$ Hourly input variables at day d, hour h $\hat{y}_{d,h}^{H}$ Hourly prediction at day d, hour h

Top: Structure of the Multi-Time-Scale models: an hourly model is initialized from and constrained to a daily parent model (Gauch et al. 2021).

Left: Hourly (MTS) models for a catchment in Northern Ontario for WY2023/24 (left) and Apr & May 2024 (right). Note different gauges!

Canada-wide Deployment

Aquanty is already running forecasts for all HYSETS watersheds and has static attributes and forcing for all HyDat catchments.

Deployment across Canada will be very straightforward:

- **GEPS**

ML Models scale very well – computational resources are already available

• Static/geographic attributes available from <u>CanadalWater</u>

 Weather data from ECCC/MSC: CaPA, HRDPS,

Larger rivers will need routing

Routing for Large Basins

Routing for a large headwater subbasin of the Peace River.

Smoky River at Watino (07GJ001), ~50,000 km²

- using an LSTM
- routing model

07GJ001

• The basin is discretized into a complete and non-overlapping set of subbasins

Each subbasin (< 2000 km²) is simulated

• LSTM forecasts are connected using a

From Model to Forecast

Actionable insights

Raw forecast data

Beta-Test with Conservation Ontario

Operational deployment with all Conservation Authorities in ON

 At all WSC stations < 2000 km² in 36 Ontario watersheds

Active Participation by CAs

 19 CAs are participating and actively using the forecasts

Daily ML-based Forecasts

- Fully automated processing
- 16 day forecasts based on GEPS

HydroClimateSight

From Training to Forecast

Seamless weather and climate data integration from calibration, over near-real-time spin-up to actual (ensemble) forecast

Numerical Weather Forecast

- Driving hydrological forecasts
- ... including ensembles
- e.g. HRDPS, GEPS, CFS

Data Ingestion and Processing

Robust data downloads

- CaPA
- **HRDPS**
- CalDAS
- SnoDAS
- ERA5
- WSC
- Kisters
- Custom data sources

Data transformation

- QA/QC
- Extract variables
- Infilling •
- Reprojection
- NetCDF/Zarr conversion
- Cleanup •

Storage

- Local SSD for immediate usage
- Local NAS (HDD) for longer term storage + backups
- Time series database •
- Cloud blob storage •

Weather Data Processing

Weather forecast data processing is highly modular, supporting multiple processing steps (right):

- Long-range forecasts are statistically downscaled and bias-corrected
- Forcing for physical models is lapse-rate adjusted using high-res DEM (critical for snow model)
- ML Model forcing is aggregated to HRU and daily (except hourly models)
- Near-real-time spin-up forcing data follows the same pipeline

- Download grib files from ECCC
- Convert/compute variables

• Clip, reproject & regrid to multiple areas of interest

- Simple statistical bias-correction
- Lapse-rate adjustment using DEM

- Generate, e.g. geotiff or zarr
- Aggregate over polygons
- Resample in time (e.g. daily)

Interoperability and Scalability

- Globally scalable using either cloud, or cloud + on premise ۲ resources
- Focus on integrating with the tools that are already being used ۲
- Web API access ۲

Questions & Roundtable Discussion

